Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A topological superconductor, characterized by either a chiral order parameter or a topological surface state in proximity to bulk superconductivity, is foundational to topological quantum computing. A key open challenge is whether electron-electron interactions can tune such topological superconducting phase. Here, we provide experimental signatures of a unique topological superconducting phase in competition with electronic correlations in 10-unit-cell thick FeTexSe1-x films grown on SrTiO3 substrates. When the Te content x exceeds 0.7, we observe a topological transition marked by the emergence of a superconducting surface state. Near the FeTe limit, the system undergoes another transition where the surface state disappears, and superconductivity is suppressed. Theory suggests that electron-electron interactions in the odd-parity xy- band drives this second topological transition. The flattening and eventual decoherence of dxy-derived bands track the superconducting dome, linking correlation effects directly to superconducting coherent transport. Our work establishes many-body electronic correlations as a sensitive knob for tuning topology and superconductivity, offering a pathway to engineer new topological phases in correlated materials.more » « less
-
The indirect exchange interaction between local magnetic moments via surface electrons has been long predicted to bolster the surface ferromagnetism in magnetic topological insulators (MTIs), which facilitates the quantum anomalous Hall effect. This unconventional effect is critical to determining the operating temperatures of future topotronic devices. However, the experimental confirmation of this mechanism remains elusive, especially in intrinsic MTIs. Here, we combine time-resolved photoemission spectroscopy with time-resolved magneto-optical Kerr effect measurements to elucidate the unique electromagnetism at the surface of an intrinsic MTI MnBi2Te4. Theoretical modeling based on 2D Ruderman-Kittel-Kasuya-Yosida interactions captures the initial quenching of a surface-rooted exchange gap within a factor of two but overestimates the bulk demagnetization by one order of magnitude. This mechanism directly explains the sizable gap in the quasi-2D electronic state and the nonzero residual magnetization in even-layer MnBi2Te4. Furthermore, it leads to efficient light-induced demagnetization comparable to state-of-the-art magnetophotonic crystals, promising an effective manipulation of magnetism and topological orders for future topotronics.more » « less
-
Platinum( ii ) binuclear complexes: molecular structures, photophysical properties, and applicationsPlatinum( ii ) binuclear complexes containing two platinum centers bridged by different types of ligands have received great research attention for their unique properties and potential applications in a variety of areas. The properties of these binuclear Pt( ii ) complexes, which could be significantly different from those of their mononuclear counterparts, are highly tunable by modifying their cyclometallating ligands and bridging ligands, as well as their structural configurations. The photophysical properties of these complexes involving a wide range of spectroscopic phenomena make them a very interesting class of materials to be spectroscopically studied. Applications of platinum( ii ) binuclear complexes have been explored in several areas, ranging from light emitting diodes, to sensors and photocatalysis. In this review, the molecular structures, photophysical properties, and applications of a variety of platinum( ii ) binuclear complexes are discussed. We intend to shed some light on the recent progress in this field and give a future outlook.more » « less
An official website of the United States government
